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Abstract. The interest in non-Fibonaccian aperiodic crystals has increased during the last 
few years, since it appears that the physical properties of the Fibonaccian quasicrystal may 
in some fundamentalaspectsnot begeneric. Asanexample the property that all theelectronic 
eigenstates in a tight-binding model for a Fibonaccian lattice are chaotic and correspond to 
a singular continuous spectrum is not shared by all aperiodic crystals. Gumbs and Ali have 
recently studied the trace map of the two families given by the inflational rule 
A + A B B  . . . B, B + A  with n Bs and A + A A A . .  . A B ,  B + A  with n As. They con- 
jectured that these two families, which for n greater than one are both extensions of the 
Fibonaccian sequence, should have rather different physical properties. We confirm their 
conjecture by showing that the structure of the Fourier spectra of the two families are quite 
different when n is greater than one. The Fibonaccian sequence is found to be much more 
like the members of the second family than the first one. This classification is then related to 
the definition of a quasicrystal using the diffraction criterion of Bombieri and Taylor, and 
the member with n equal to two in the first family is shown to be a marginal case. 

1. Introduction 

Since the fundamental experimental discovery by Shechtman et a1 (1984) and the theor- 
etical analysis by Levine and Steinhardt (1984) there has been considerable interest in 
the physical properties of quasiperiodic systems. For references, see the newly edited 
extensive review by Steinhardt and Ostlund (1987). Since the fabrication and study 
(Merlin et a1 1985) of deterministic aperiodic superlattices of semiconducting con- 
stituents, the activity within the field of one-dimensional quasiperiodic systems has been 
very intense. The dominant part of the work on one-dimensional quasiperiodic systems 
has been focused on Fibonaccian lattices. Here we wish to argue that this can in some 
sense be said to be misleading, since the special properties possessed by the Fibonaccian 
quasicrystal are not shared by all other aperiodic crystals. The chaotic nature of all the 
electronic eigenstates in a Fibonaccian quasicrystal may for instance not be typical 
(Riklund et a1 1987, Severin and Riklund 1989). There still seems to be interesting 
physics to be discovered and understood within the field of non-Fibonaccian aperiodic 
crystals. 

The Fibonaccian sequence can be generated by the inflational rule A +  AB and 
B + A. In the well known original interpretation due to Fibonacci in 1202, the first part 
of the rule means that a mother rabbit A in the next generation has a baby B. The second 

0953-8984/89/335607 + 06 $02.50 @ 1989 IOP Publishing Ltd 5607 



5608 M Severin and R Riklund 

h 

JJJJ 
900 

Figure 1. Fourier power spectrum 
for a Fibonacci sequence with N = 
987. (Symbols are as defined in 
P 2 . )  

part of the rule then means that in the next generation the baby has grown up to be an 
adult mother. A very natural generalisation of that rule (Riklund and Severin 1988, 
Gumbs and Ali 1988) is to consider the case with birth of rabbit twins or triplets. The 
corresponding rules are then A + ABB, B -. A and A -. ABBB, B + A, respectively. 
Let us denote these sequences and the corresponding aperiodic crystals with the symbols 
B2 and B3 and say that they belong to a family of sequences of aperiodic crystals called 
B. The general case A-. ABBB . . . B, B + A with n Bs are similarly denoted by the 
symbol Bn. We will also consider the reverse sequence given by the substitutional rule 
A + AAA . . . AB, B + A with n As and this sequence is named the sequence An 
belonging to the family A.  If we use this notation also for the case n = 1 both A1 and B1 
should refer to the usual Fibonaccian sequence or quasicrystal. To avoid this double 
nature of the notation we will in the future when we refer to the family A or B only 
consider the extended cases with n 2 2, unless otherwise stated. 

2. Fourier transform 

Consider a specific generation of length Nand let in general the sequence considered be 
denoted by c ( j )  where j goes from 0 to N - 1. The discrete Fourier transform is then 
given by (Schroeder 1986) 

N -  1 

~ ( k )  = c ( j )  exp(-2xi jk /~)  k = 1 , 2  , . . . ,  N. 
] = O  

To agree with the calculations in the above-mentioned book (Schroeder 1986), we will 
choose c ( j )  equal to +1 if it corresponds to an A and - 1 if it corresponds to a B. Other 
choices of the two possible values of c( j )  could be physically motivated, but since this 
does not influence our discussion, we will use this simple choice. The result will be 
represented by graphs showing the Fourier power spectrum, which is the absolute value 
1 C(k)/ as a function of k for the different sequences studied. 

3. Results and comparisons 

As a reference we first show in figure 1 the Fourier power spectrum for the Fibonaccian 
case with N = 987. The corresponding Fourier spectrum for the family B (corresponding 
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to several babies) is shown in figure 2(a)-(d) for n = 2,3 ,4 ,  and 5 with N = 1365,1159, 
1165 and 781, respectively. The variation in N is due to the fact that we have always 
chosen whole generations for all sequences, although this is not necessary. The gross 
features of the structure, at least for larger values of n ,  is seen to be n humps separated 
by (n  - I) empty regions. Inside these humps there is a blurred structure built up of very 
densely packed delta-spikes. The analogous result for the family A (with several As) is 
given in figure 3(a)-(d) for n = 2 ,  3, 4 and 5 with N = 1393, 1549, 1597 and 836, 
respectively. Here we see a very clear distinction between the two families. In the A 
case the dominant peaks are much more isolated and larger. Although harder, it is still 
possible to recognise the gross features with n humps as discussed above for the B family. 
It seems reasonable that it should be possible to detect the demonstrated difference in 
peaks by high resolution x-ray diffraction experiments. The natural question then arises 
as to whether there is a logical explanation for this remarkable discrepancy. Both the 
families considered can be generated by a matrix multiplication scheme (Lu et a1 1986, 
Bombieri and Taylor 1986, 1987). The matrices M A ,  and M B n  corresponding to gen- 
erating the sequences An and Bn are respectively 

The eigenvalues A(n) ,  and B(n),  are easily found to be 

A ( n ) ,  = I n  2 B(n) ,  = t 2 V F i .  
We show in table 1 the numerical values given by these formulae for n up to 10 for both 
families. To facilitate a comparison we have in both cases included the value for the 
Fibonacci sequence in the top row (n  = 1). Note the monotonic variation with n in all 
the four columns. In the family A all the members with n 2 2 have one eigenvalue 
greater than one and one with absolute value less than one. In the family B all the 
members with n 2 3 have two eigenvalues with absolute value greater than one. It is to 
be noted that the Fibonaccian sequence in this sense belongs to the same class as the 
members in family A.  Since the sequence B2 has one eigenvalue with absolute value 
greater than one and one eigenvalue with absolute value exactly equal to one, it can be 
said to be a marginal case. According to the definition given by Bombieri and Taylor 
(1986, 1987), the characteristic equation of the generating matrix should have exactly 
one eigenvalue greater than one to define quasicrystals as aperiodic crystals that diffract. 
Thus our findings are in agreement with the definition according to Bombieri and Taylor 
(1986, 1987), although our definition of the Fourier transform is not exactly the same. 
They consider a quasilattice with only one weight and instead vary the distances between 
the points, but this does not seem to be of importance for the global type of analysis of 
the structure of the Fourier transform we perform here. 

4. Summary and outlook 

We have confirmed the conjecture recently raised by Gumbs and Ali (1988) concerning 
the different physical properties of the two families bf extensions of the Fibonaccian 
quasicrystal. The most natural extension called family B (letting the rabbit have multi- 
plets) is shown to give an extension that is not in the same category as the original 
Fibonaccian quasicrystal. Referring to the definition due to Bombieri and Taylor (1986, 
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Table 1. The eigenvaluesA(n), and B ( n ) ,  of the generating matrices for the sequences An 
and Bn of the families A and B. The parameter n goes from 1 to 10. Note that the Fibonaccian 
case has also been included in the first row ( n  = 1). 

n 
- 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

A b ) +  

1.6180340 
2.4142136 
3.302 775 6 
4.2360680 
5,1925824 
6. I622777 
7.140 054 9 
8.1231056 
9.1097722 

10.099 019 5 

A @ -  

-0.61 8034 0 
-0.4142136 
-0.302775 6 
-0.236068 0 
-0.1925824 
- 0.162 277 7 
- 0.140 054 9 
-0.1231056 
- 0.109 7722 
- 0.099 019 5 

B(n)* 

1.618034 0 
2.000000 0 
2.302 775 6 
2.5615528 
2.791 1278 
3 .OOOOOOO 
3.192 5824 
3.3722813 
3.5413813 
3.701 562 1 

B(n)-  

-0.6180340 
- 1 .oooooo 0 
- 1.302775 6 
- 1.561 5528 
- 1.791 2878 
-2.000 0000 
-2.192 582 4 
-2.3722813 
-2.5413813 
-2.701 5621 

1987) the B family should really be called an aperiodic crystal and not a quasicrystal 
because of the non-atomic diffraction properties. The reverse family A, however, 
diffracts very well as does the Fibonaccian quasicrystal. 

In a further study we plan to relate these findings to the correlation functions of the 
different sequences. It should also be of great interest to see the consequences of these 
discrepancies between the two families considered for the structure of the electronic 
spectrum and the localisation character of the electronic eigenstates in a tight-binding 
model. The optical transmission through multilayers arranged according to sequences 
belonging to the two families studied above should also be different in character. 
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